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The Relationship Between the Phi Coeflicient and the Unidimensionality
Index H: Improving Psychological Scaling From the Ground Up
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To study the dimensional structure of psychological phenomena, a precise definition of unidi-
mensionality is essential. Most definitions of unidimensionality rely on factor analysis. However,
the reliability of factor analysis depends on the input data, which primarily consists of Pearson
correlations. A significant issue with Pearson correlations is that they are almost guaranteed to
underestimate unidimensionality, rendering them unsuitable for evaluating the unidimensionality
of a scale. This paper formally demonstrates that the simple unidimensionality index H is always
at least as high as, or higher than, the Pearson correlation for dichotomous and polytomous items
(¢). Leveraging this inequality, a case is presented where five dichotomous items are perfectly
unidimensional, yet factor analysis based on ¢ incorrectly suggests a two-dimensional solution.
To illustrate that this issue extends beyond theoretical scenarios, an analysis of real data from
a statistics exam (N = 133) is conducted, revealing the same problem. An in-depth analysis
of the exam data shows that violations of unidimensionality are systematic and should not be
dismissed as mere noise. Inconsistent answering patterns can indicate whether a participant
blundered, cheated, or has conceptual misunderstandings, information typically overlooked by
traditional scaling procedures based on correlations. The conclusion is that psychologists should
consider unidimensionality not as a peripheral concern but as the foundation for any serious

scaling attempt. The index H could play a crucial role in establishing this foundation.

Keywords: unidimensionality, Phi, Pearson correlation, Guttman scaling, factor analysis

Measurement implies that one characteristic
at a time is being quantified. (McNemar, 1946, p.
298)

Claiming that a variable is measurable implies that it is
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unidimensional (e.g., Falissard, 1999; Hattie, 1984; Ziegler
& Hagemann, 2015). This is evident for non-psychological
variables. For instance, length, mass, and speed are unidimen-
sional variables with fixed units. Two lengths expressed in the
same unit can be added, which proves to be extremely useful.
However, it does not make sense to add length to mass, as it
involves combining two different dimensions. This principle
applies equally to psychological variables. For instance,
calculating a sum score (or a factor score) for intelligence
from several items implies that the items measure the same
dimension. When testing a hypothesis regarding intelligence,
the sum score representing intelligence must not be a mixture
of intelligence, attention and concentration. If it were, any
failed hypothesis could be attributed to measurement problems
(e.g., Ziegler & Hagemann, 2015). Therefore, before testing
a hypothesis, it is crucial to establish beyond reasonable
doubt that the variables in question are scalable and thus
unidimensional.

There is a straightforward visual analogy: if a variable is
scalable, one can draw a line and position objects (e.g., items
and participants) on this line. The single line represents the
concept of unidimensionality. This idea is simple and makes
unidimensionality a highly intuitive concept. Despite this,
psychologists have made unidimensionality seem complicated.
Often, sophisticated factor-analytic methods with unrealistic
assumptions and arbitrary cutoff criteria are used to test if
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several items are unidimensional. Many psychologists are
dissatisfied with these methods (e.g., Falissard, 1999; Hattie,
1985; Slocum-Gori & Zumbo, 2011; Ziegler & Hagemann,
2015) but are hesitant to adopt alternatives. For instance,
Guttman scaling (Guttman, 1944), which exclusively focuses
on unidimensionality, is rarely used in psychological research.
Consider the European publisher Hogrefe, which offers ap-
proximately 700 psychological tests on their German website,
with only one of these tests mentioning Guttman scaling in its
detailed description.

One reason for this neglect might be that psychologists do
not believe Guttman scaling offers a fundamentally different
perspective. Most psychologists prioritize inter-item corre-
lations; if these are high, both factor analysis and Guttman
scaling suggest one dimension. Conversely, if the correlations
are low, neither method strongly supports a single dimension.
However, this assumption is flawed. A scale can be perfectly
unidimensional even with medium or low item correlations.
Factor analysis can incorrectly suggest multiple dimensions
when there is only one. This article demonstrates when and
why this discrepancy occurs and explores the implications for
psychological scaling.

In the first part, perfect scaling (Guttman scaling) is intro-
duced as a conceptualization of unidimensionality. Then, the
relationship between the unidimensionality index H and the
Pearson correlation for dichotomous and polytomous items (¢)
is examined. Using a derived inequality, a theoretical scenario
is presented where factor analysis fails to detect a single
dimension, even though the data is perfectly unidimensional.
In the second part, an empirical investigation demonstrates
that this issue can also occur with real data. Finally, the
implications of these findings for psychological scaling are
discussed.

Part I: Theory

Many psychologists are not familiar with Guttman’s scal-
ing ideas, so a motivating example is presented. Imagine
an intelligence test that consists of two dichotomous items
measuring the same underlying latent variable. One item is
easy, and the other is difficult. You want to assign a single
meaningful value to each participant regarding the underlying
latent variable (intelligence). If the process is deterministic
and all confounding variables are known, there can only be
three outcomes: (1) both items are not solved, (2) both items
are solved, or (3) the easy item is solved, but the difficult one
is not (for a similar example, see Guttman, 1944, p. 143).
It is not possible for the difficult item to be solved while
the easy one is not, as this would be a logical contradiction.
This becomes evident when considering a one-dimensional
variable (a line) on which both items and all participants are
located (see Figure 1).

With two items, four response patterns are possible, but
only three regions exist on the line in Figure 1. Therefore, one
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Figure 1: An example of perfect unidimensional scaling with
two dichotomous items

Item 1 Item 2

A B C

Note. The items and persons are positioned on a single latent scale
(line). The two items divide the scale into three regions: Region A,
before Item 1, with a score of 0; Region B, between Item 1 and Item
2, with a score of 1; and Region C, beyond Item 2, with a score of 2.

response pattern cannot occur. In region A, no item is solved,
the response pattern is 00, and the score is 0. In region B, the
easier Item 1 is solved, the response pattern is 10, and the score
is 1. In region C, both items are solved, the response pattern
is 11, and the score is 2. The remaining response pattern, 01,
is not allowed because it violates unidimensionality. A person
cannot be located above Item 2 and simultaneously below Item
1 (pattern 01). This principle is the essence of unidimensional
scaling. Simply counting how often the violating pattern
occurs serves as a reasonable unidimensionality index', with
many more complex indices derived from it (for an overview
see, for instance, Zysno, 1993).

Note that Guttman’s approach is purely non-parametric,
meaning it does not require any assumptions about the dis-
tribution of the latent variable. In fact, this type of scaling
relies on very few assumptions overall, as it is ordinal in na-
ture. The procedure involves ordering items and participants
without making any conclusions about the distances between
them. This raises the question of whether unidimensionality
is inherently tied to ordinality or if Guttman’s model defines
unidimensionality too narrowly, necessitating additional con-
ceptualizations. This discussion will be deferred, as it is
linked to the analyses that will be presented.

An extension of Guttman scaling to items with more than
two ordered categories (polytomous items) was first proposed
by Molenaar (1982) and subsequently developed indepen-
dently by Zysno (1993). An introductory text can be found
in van Schuur (2011). The basic principle of scaling remains
the same: positioning items and participants on a single line.
Since the items have multiple answer options, it is necessary
to position the item steps rather than the items themselves on
the line. For two items with three ordered categories, one of
several possible unidimensional scales is depicted in Figure 2.

The maximum possible score is 4, and the minimum is
0, resulting in 5 regions, corresponding to 2 steps per item
(from O to 1 and from 1 to 2). Out of the 9 possible response
patterns, 4 are not permitted. Similar to the dichotomous case,
the number of these disallowed patterns serves as the basis for
unidimensionality indices.

It is important to understand that such unidimensionality

10 indicating perfect unidimensionality.
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Figure 2: An example of perfect unidimensional scaling with
two trichotomous items
Step 14 Step 24

Step 2, Step 1,

A B C D E

Note. The item steps and persons are positioned on a single latent
scale (line). The four item steps partition the scale into five regions.
The number represents the item, while the subscript indicates the
step.

indices are not measures of correlation and can therefore differ
from them. While high correlations approaching 1 trivially
suggest unidimensionality, the interpretation becomes less
clear for correlations that are low or moderate. Similarly,
one may question whether a high unidimensionality index
necessarily indicates a high correlation.

To explore these questions, it is essential to provide formal
definitions and a specific scenario. While the principles of
Guttman scaling apply to both dichotomous and polytomous
items, this article will primarily focus on dichotomous items.
There are two main reasons for this focus: Firstly, reasoning
about dichotomous items is simpler. Most psychologists are
already familiar with a fourfold table and the y>-test, enabling
them to follow the arguments more easily. Secondly, the item
response process for dichotomous items is more straightfor-
ward. For example, in most ability tests, questions can be
scored as 0 (not solved) or 1 (solved). Although there may be
some room for interpretation, the response process is generally
clear. In contrast, when participants respond to personality
questions using a 5-point scale with semantic labels, the
response process becomes more ambiguous. Therefore, it is
more feasible to find an empirical example of a unidimensional
scale for dichotomous items, which will be attempted here.
It is important to note that the main findings also apply to
polytomous items, which will be demonstrated but not as
extensively discussed.

The focus will be on the Phi-coefficient (¢) as a measure
of association and the H-index (Loevinger, 1947, 1948) as a
measure of unidimensionality. With over 70 binary measures
available (e.g. Brusco et al., 2021; Choi et al., 2010), it is
important to explain why Phi and H were chosen. Notably,
although the focus is on dichotomous items, both Phi and H can
be applied to polytomous items, allowing more generalizable
conclusions.

The Phi-coefficient for dichotomous and polytomous items
is equivalent to the Pearson correlation, one of the most widely
used indices in psychology.” In a study on the base-rate influ-
ence on the similarity of binary measures, Brusco et al. (2021)
describe the Phi-coefficient as a “popular exemplar” (p. 9) for
the corresponding subset.

Regarding information content, the Phi-coefficient is con-
sidered by some scientists to be the most informative single

score for evaluating the quality of a binary classifier prediction,
and it is strongly recommended in machine learning (Chicco,
2017).> There has even been a suggestion to replace the area
under the curve of receiver operating characteristics (ROC
AUC) with the Phi-coefficient for binary classification (Chicco
& Jurman, 2023).

Studying H as a unidimensionality index is appealing
for several reasons. The most straightforward definition of
unidimensionality is based on Guttman scaling, which is
non-parametric and does not require sophisticated statistical
models. If there are no Guttman errors in a scale, it can always
be constructed to be perfectly unidimensional. H measures
the deviation from this ideal scale, whereas many other indices
of unidimensionality are unrelated to Guttman errors.

Out of the many proposals for unidimensional indices, H is
a more advanced measure because it accounts for the expected
value under the null model (van Schuur, 2011; Zysno, 1993).
Additionally, significance tests can be easily constructed for
many different applications of H (van der Ark et al., 2008). In
ordinal item response theory (Mokken analysis), the H-index
is the de facto standard (Ark, 2012; Sijtsma & Molenaar,
2002; van Schuur, 2011). In the analysis of binary measures
mentioned earlier (Brusco et al., 2021), H was categorized as
ungrouped, indicating its unique features.

Definitions

For the dichotomous case, the widely known cross table in
Table 1 is useful for understanding the definitions.

Table 1: Cross table of two dichotomous variables.

Item 2
0 1
a b a+b
Item 1
em c d c+d
atc b+d a+ctb+d=N

The item difficulties p; and p, are defined as:

» (c+d)
1:
N
_(b+d) M
p2=

To determine the number of violations regarding unidimen-
sionality, it is useful to know which item is more difficult. Let

2A Google Scholar search returns 815,000 documents with the
search term “Pearson correlation” psychology. The search term
“Phi-Coefficient” psychology yields 14,000 documents, “tetrachoric
correlation” psychology results in 6,000, and the search term “poly-
choric correlation” psychology returns about 10,000 documents.

3In this field, it is known as the Matthews correlation coefficient
MCO).



us assume the row item is easier or both items have equal
difficulty, which leads to b being smaller than ¢ or equal to c:

P12p2
c>b

2

Since we can always place the easier item in the row, we do
not need to consider the case where the column item is easier.

For the dichotomous case, the ¢-coefficient serves as a
useful shortcut for the Pearson correlation:

= ad - bc
V(a+b)(a+c)(d+b)(d+c)

3)

It will suffice to study positive correlations, as a negative
correlation between two items can be made positive by reverse
coding one of the items.

To understand how correlations are related to unidimen-
sionality, an index of unidimensionality is required. Among
the many different indices, the most advanced ones account
for the expected errors under a null model (e.g. van Schuur,
2011; Zysno, 1993):

_ Cobs

“4)

u=1
€exp

Where eqps are the observed errors and e, the expected
errors. One prominent unidimensionality index is the co-
efficient of homogeneity H, which is based on the idea of
statistical independence originally described by Loevinger
(1947, 1948). A straightforward introduction, complete with
numerous examples, is provided by van Schuur (2011).

When two items are independent, their joint probability is
equal to the product of their individual probabilities. Given
that we are dealing with absolute frequencies, this product
must be multiplied by the sample size. This approach mirrors
the logic of the y? test, leading to the calculation of the error
frequency as follows:

Cexp = (1 =p1)p2N )
3 a;\-]b b]-l\-,d ©)
_(a+Db)(b+d) )
- N

The observed errors are simply b and the coefficient of
homogeneity H can then be defined as follows:

®)
€))

eobs = b
bN

H= - nera

1

When examining the definitions of unidimensionality (For-
mula 9) and correlation (Formula 3) for dichotomous items,
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it is evident that both are composed of the same variables
(the frequencies a, b, ¢, d). However, the relationship between
these two coefficients, as well as the conditions under which
they might be similar or different, is not immediately clear.

The Relationship Between H and Phi

A particularly interesting and useful relationship between
H and ¢ (for positive values) is:

H2>¢ (10)

For readers interested in the details of this formalism, the
Appendix provides two distinct derivations of the inequality
along with supplementary notes. However, the subsequent
arguments are generally comprehensible without requiring a
deep dive into these derivations.

The inequality indicates that unidimensionality (as de-
scribed by H) is always at least as large as the Pearson
correlation (¢). But how is this relevant to psychological
scaling? The key insight is that H can be significantly larger
than ¢, potentially reaching a value of 1. Pearson correlations
are almost guaranteed to underestimate unidimensionality
and are unsuitable for assessing the unidimensionality of a
scale. This distinction is especially clear in the dichotomous
case: under a perfectly unidimensional model with an error
frequency b = 0, the correlation ¢ remains unrestricted. For
H =1, ¢ can theoretically range anywhere between 0 and 1.
This is because eliminating errors (b = 0) does not impose
meaningful constraints on ¢, illustrating the limitation of
correlations in capturing unidimensionality.

6= ad _ Vad
" Valatodd+co) Na+o(c+d

(11)

Setting ¢ = 0 leads to ¢ = 1, while setting either a or d to 0
results in ¢ = 0. If N is sufficiently large, ¢ can take on any
value in between, despite perfect unidimensionality.

To better illustrate this idea, the coeflicient ¢ was calculated
for all combinations of a, b, ¢, d with N = 200, resulting in
1,373,701 combinations. Figure 3(a) shows the relationship
between ¢ and H for the 346,829 cases where ¢ > Oand ¢ > b
(b is the error frequency). Additionally, a calculation was
performed for a polytomous case with three ordered answer
options. For this case, N = 30, resulting in 48,903,492 possi-
ble combinations, out of which 24,257,529 have a positive ¢.
These results are depicted in Figure 3(b). Note that plotting
such a large number of points is impractical, so Figure 3
instead shows hexagonal heat-maps, which aggregate the data
based on regular hexagons.

Several observations are evident. First, when H = 1, all
correlations can occur (evident from the line of hexagons
at the top). This implies that even a very small correlation
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Figure 3: The relationship between H and ¢
(a) Two dichotomous items (N = 200)
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(b) Two trichotomous items (N = 30)
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Note. Hexagonal heat-maps showing: (a) 346,829 cases where ¢ > 0 and ¢ > b (the error frequency is b) for N = 200 with two dichotomous
items (b) 24,257,529 cases where ¢ > 0 for N = 30 with two trichotomous items. The lower limit is clearly visible in both subfigures,

corresponding with H > ¢.

can be consistent with a unidimensional model. Second,
the area between H = 1 and the next smaller value of H is
empty because the data is discrete and N is restricted. Certain
combinations of H and ¢ do not occur unless the sample size is
large enough. The H values do not increase continuously; they
can jump from lower values, such as .5 or .6, directly to 1 (for
more details on this in the dichotomous case see Davenport
& El-Sanhurry, 1991).4 Third, and most importantly, the
lower boundary as stated in Equation 10 is clearly visible. The
higher the correlation, the higher the unidimensionality index.
However, the unidimensionality index can be significantly
larger, especially for small correlations. This is generally
positive news, as factor-analytic results based on Pearson
correlations may underestimate unidimensionality. Conse-
quently, many questionnaires used by psychologists might
be more unidimensional than currently believed. In extreme
cases, factor analysis could completely overlook a perfectly
unidimensional scale.

When Factor Analysis Can Be Misleading

To illustrate how factor analysis based on ¢ can be mis-
leading, a unidimensional model (H = 1) was created with 5
dichotomous items and 100 responses per item. The strategy
to devise these items was straightforward. By setting b to 0
but c to a relatively large value, perfectly unidimensional items
with low correlations were created. To avoid identical items,

¢ was varied slightly.”> All possible cross-tables of the 5 items
are displayed in Table 2. In the header of the table (e.g., 1o,
1y, etc.), the first number is the item number, and the subscript
number is the response (either O or 1). In all quadruples, the
error frequency is 0 (depending on the difficulty, either b or
c). This data set is perfectly unidimensional. However, factor
analysis based on ¢ favors a 2-factor solution (see Table 3):
the explained variance with one factor is only 53%, whereas
with two factors, it is 90%. Although different criteria for
factor extraction exist, to adequately recover the data, one
must choose at least a 2-factor solution. Yet, the data is
unidimensional.

Note that by using H instead of ¢ as the input to factor
analysis, one will always obtain the same or fewer dimensions
because H > ¢. This holds true for both dichotomous and
polytomous items. Clearly, fewer dimensions are desirable
for many reasons, so what is the trade-off? Factor analysis
based on ¢ produces continuous factor scores, which can
be conceived as an interval scale. In contrast, H essentially

4Since the calculation is quite computing-intensive, a much larger
N is not feasible. However, this does not affect the argument presented
here, which is based on the lower bound of H. Further note that for
typical correlations in psychology of around .3, almost all H values
above .3 are possible for the studied sample size.

5The source code to reproduce these results is available on GitHub:
https://github.com/johannes-titz/unidim
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Table 2: Cross tables of five unidimensional items

lo 1t 20 21 30 31 4 4 35 5
1o 90 0 10 80 &9 1 11 79 85 5
1 0 10 0 10 0 10 0 10 0 10
20 10 0 10 0 10 0 10 0 10 0
2; 80 10 0 9 79 11 1 8 75 15
30 89 0 10 79 &9 0 11 78 85 4
34 1 10 0 11 0 11 0 11 0 11
49 11 0 10 1 11 0 11 0 11 0
4 79 10 0 8 78 11 0 8 74 15
50 85 0 10 75 85 0 11 74 85 0
59 5 10 0 15 4 11 0 15 0 15

Table 3: Example of factor analysis for five unidimensional
items

Item 1-factor solution 2-factor solution
A A1 As

1 0.950 0.950 0.024

2 0.119 0.093 0.946

3 0.997 0.997 0.025

4 0.125 0.099 0.993

5 0.839 0.837 0.065

indicates how well an ordinal model fits the data. In Guttman
scaling, the equivalent of the factor score is the sum score,
which is discrete and ordinal. Is the trade-off of sacrificing
the interval scale worth it?

There does not seem to be a trade-off, as there is no com-
pelling reason to argue that factor scores are on a meaningful
interval scale in the first place. Factor analysis does not test
for deviations from a true interval scale; it merely produces
continuous values. There is no strong argument to suggest that
the distance between factor scores of, for instance, 1.1, 1.2, and
1.3 are psychologically equivalent. To my knowledge, only
one rigorous method exists to test whether latent constructs
are on an interval scale: conjoint measurement theory (Luce &
Tukey, 1964; Michell, 1990). So far, there is no evidence for
interval scales in psychology, except perhaps for loudness and
brightness perception (Luce & Steingrimsson, 2011). Thus,
little seems to be lost when reverting to an ordinal model (for
a similar argument see Heene, 2013).

Additionally, the question arises whether unidimensionality
necessitates an interval or ratio scale, and if so, under which
circumstances. Fundamentally, this poses the question of
what unidimensionality truly is. Some authors are hesitant to
provide a definitive answer. For instance, Heene et al. (2016)
explicitly avoids a semantic definition and simply defines
unidimensionality as local statistical independence. Ziegler
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and Hagemann (2015) point out cases where this criterion
is insufficient (see also Sijtsma & Molenaar, 2002). Sijtsma
(2009) claims that unidimensionality is not a unitary concept
but rather depends on the underlying model. While this
pluralistic view is understandable, it overlooks the fact that
unidimensionality is a fundamental concept of measurement.
If it is not possible to clearly define such a fundamental
concept, this might indicate overcomplication.

In the introduction, a general and simple definition of
unidimensionality was given: if participants and items can be
positioned on a single line, the construct could be regarded
as unidimensional.® To be more specific, the participants and
items must be positioned in such a way that the data can be fully
recovered. This is the case for perfect Guttman scaling, where
the sum score of a participant allows all item responses to be
derived. Based on this perspective, unidimensionality does
not require an interval or ratio scale, only order. By imposing
unnecessary restrictions on tests of unidimensionality, such as
the requirement for an interval scale, one reduces the likelihood
of identifying unidimensionality when it exists. This could be
summarized as the essence of H > ¢. ¢ encompasses more
than just unidimensionality.

Some critics might argue that the example presented in
Table 2 is contrived, as it was explicitly chosen to show an
extreme and unrealistic result (perfect unidimensionality).
However, more realistic scenarios where H is smaller than 1
can also be easily created. Furthermore, there is no reason
why the chosen response pattern could not occur empirically
with real participants. Given the vast amount of data gathered
in psychological research, it is very likely that similar cases
do occur. This will be demonstrated in the second, empirical
part of the paper.

Part II: Empirical Example

Most currently used psychological questionnaires are prob-
ably not unidimensional because they are too complex. Con-
sider the Big Five flagship NEO-PI-R (Costa & McCrae,
2008), which contains 240 items across 30 facets. For each of
the five unidimensional factors, there are 48 items. It seems
virtually impossible for 48 items to be strictly unidimensional.”
The semantics and context of personality statements are too
complex to consistently order 48 items on a single line.

For demonstration purposes, it is better to construct a
new and simple example where unidimensionality has high

Note that this is merely evidence, and the item response process
could involve several dimensions behaving like one. This is a general
problem of unidimensionality analysis: it is easier to provide evidence
against a single dimension than to provide evidence for it (e.g. Dunn
& Kalish, 2018). Still, as long as a phenomenon can be conceived as
unidimensional, this should be favored until evidence is presented
that shows otherwise.

"The NEO-PI-R uses polytomous items, but as has been shown
previously, the inequality also holds for them.
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face validity. A content area based on the author’s expertise
was chosen: teaching statistics. Consider the typical skills
acquired by students studying research methods and statistics.
For instance, to apply Bayesian revision, basic knowledge
of probabilities is required. Without this basic knowledge,
solving problems involving Bayesian revision is impossible.
Such logical dependencies often lead to unidimensionality.

Methods

The methods will only be briefly described, as this article
is not a standalone empirical study. The aim is to present a
real dataset that is almost perfectly unidimensional.

In a real statistics exam at the Institute of Psychology at
Chemnitz University of Technology, 133 students were given
the following scenario:®

You have been hired as an external consultant
to evaluate the quality of a leadership assessment
center for a large company. Based on theoretical
considerations, you estimate that approximately
19% of all applicants are actually suitable for
the position. Additionally, using data from nu-
merous applicants and subsequent evaluations
of their suitability, you can estimate two more
probabilities: among the individuals who are
actually suitable, 67% are rated as suitable by
the assessment center; and among those who are
actually unsuitable, 74% are rated as unsuitable
by the assessment center. Your goal is to calculate
the joint probabilities to subsequently estimate the
conditional probabilities for incorrect decisions.
What is the probability of the following events?

1. Probability of the conjunction of the two
events: actually suitable AND rated as suitable
by the assessment center (in %)

2. Probability of the conjunction of the two
events: actually unsuitable AND rated as unsuit-
able by the assessment center (in %)

3. Probability of the conjunction of the two
events: actually suitable AND rated as unsuitable
by the assessment center (in %)

4. Probability of the conjunction of the two
events: actually unsuitable AND rated as suitable
by the assessment center (in %)

5. Probability that a person rated as suitable
is actually suitable. (in %)

The ability to solve the last item depends on successfully
solving the first and fourth item. If a student cannot calculate
joint probabilities®, they will also struggle with applying
Bayesian revision. Conversely, if a student can effectively
apply Bayesian revision, it indicates proficiency in handling
the easier items. This description essentially defines unidi-
mensionality. While the ideal frequency of unidimensionality

violations is expected to be 0 (and H = 1), the correlation
between items is not expected to be 1.

Results

The Pearson correlations between Item 5 and the other
items are far from reaching 1 (see Figure 4, last column), yet
the index H indicates strong unidimensionality (same Figure,
last row). If 2 (out of 133) students were removed from the
data set, Item 5 would exhibit perfect unidimensionality with
all other items (H = 1), but the highest correlation would only
reach .52. This outcome underscores that the inequality H > ¢
is not merely an esoteric detail but has practical relevance:
relying on Pearson correlations can lead to overlooking a
unidimensional scale.

Figure 4: Pearson correlation and unidimensionality index
H for all item pairs

— NA 0.89 0.53 0.49 0.27
o~ 00 NA 0.58 0.53 0.31
iE" ™ 0 0 NA 0.80 0.41
< 0.86 0.8 0.9 NA 0.49
0 ) 0.89 0 ) NA
1 2 3 4 5

Item

Note. The upper triangular matrix shows the Pearson correlation (¢).
The lower triangular matrix shows the unidimensionality index H.

In line with this statement, interpreting the factor analysis
results (Table 4) proves challenging. A one-factor solution
only accounts for 40% of the variance in the data, whereas a
two-factor solution explains 73%. Clearly, Items 1 and 2 form
one factor, Items 3 and 4 another, but Item 5 shows only mod-
erate factor loadings and there are moderate cross-loadings

8The actual scenario was in German, and the order of the questions
was: 1,4, 3,2, 5. Here, the order is shown sorted by the frequency
of correct solutions. Note that there were four parallel versions of
this test with different numbers in the question text.

Note that the specific method for calculating these probabilities
is not crucial. Whether using a formula, drawing a probability tree,
or employing another approach, the key point is that without solving
Items 1 and 4, Item 5 remains unsolvable.
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across all items. To adequately capture the data, a three-
factor solution is necessary. Many analysts would likely also
explore correlated factors (non-orthogonal rotation). Overall,
determining the appropriate approach is not straightforward,
even though the data is highly unidimensional. The H index for
all items is .86, clearly surpassing the proposed cutoff of .5 for
a strong scale by Mokken (1971, p. 185). However, even this
high value likely underestimates the scale’s unidimensionality
in practical terms. Many violations of unidimensionality
can be resolved by examining how participants respond, as
demonstrated in the next section.

Table 4: Factor analyses for Bayesian revision task

Item 1-factor solution 2-factor solution
A A1 As

1 0.504 0.224 0.915

2 0.583 0.334 0.842

3 0.940 0.903 0.264

4 0.961 0.922 0.281

5 0.494 0.456 0.189

Explaining Violations of Unidimensionality

In Table 5, the response patterns of the 9 participants
who violate unidimensionality are displayed. There are a
total of 23 violations, most of which can be categorized and
addressed. These violations typically stem from blunders,
potential cheating, and conceptual misunderstandings. It is
important to emphasize that expertise in the content area is
essential for understanding the item response process and
resolving violations of unidimensionality.

Table 5: Patterns that violate unidimensionality

ID I1 12 I3 14 IS5 V S explanation
41 0 0 O O 1 4 1 Ccheating
108 0 O 1 0 O 2 1 unclear, failed
8 0 O 1 1 0 4 2 redherring
76 0 0 1 1 0 4 2 redherring
89 1 0 1 0 0 1 2 blunder
120 1 0 0 1 0 2 2 unclear, failed
30 0 1 1 1 0 3 3 blunder
36 1 1 0 1 0 1 3 blunder
117 1 1 0 0 1 2 3 cheating

Note. ID: Participant ID. I: Item. V: Violations (number of
violations). S:Score (the sum score for all five items). The items are
sorted by the score.

An interesting category of violations involves blunders,
which cannot be entirely avoided but are generally straightfor-

ward to resolve. For instance, Participant 89 used an incorrect
probability for Items 2 and 4, entering 91% instead of the
correct 81% (based on a base rate of 19%). Despite this
error, the participant correctly solved Items 1 and 3, indicating
proficiency in calculating joint probabilities. Adjusting for
this oversight reduces the number of violations by 1.

Participant 30 provided a value of 12.16% for Item 1,
slightly off from the correct value of 12.73%. Given their ac-
curate responses to the subsequent three items, it seems likely
that the deviation in Item 1 resulted from minor inattention,
such as entering slightly incorrect digits in the calculator. By
allowing for a slight tolerance in acceptable solutions, the
number of violations is reduced by 3.

Participant 36 also likely made a blunder, answering Item
3 with 27.3% instead of the correct 2.73% (calculated from
a base rate of 7% and a conditional probability of 61%:
0.07(1 — 0.61)). Despite this error, the participant demon-
strated the required skill in Items 1, 2 and 4. Correcting
this oversight reduces the error count by 1. After address-
ing potential blunders, 18 violations remain to be explained
(H = .89).

Another category of violations involves patterns indicative
of cheating. For example, Participant 41 failed to solve
Items 1 through 4 but surprisingly answered Item 5 correctly.
Given the incorrect responses to the earlier items, it seems
implausible for the participant to have known the answer to
Item 5. Therefore, one approach would be to award no points
for Item 5, reducing the violation count by 4.

Similarly, Participant 117 managed to solve only the first
two items correctly but not Item 4. It is unclear how the
participant could have arrived at the correct solution for Item
5 under these circumstances. Awarding zero points for Item
5 would reduce the violation count by 2. By identifying
and addressing these patterns as indicative of cheating, the
remaining violation count is reduced to 12 (H = .92).

Another group of violations stems from conceptual mis-
understandings. Some participants confuse the conditional
probability P(A|B) with the conjunctive probability P(AN B).
This misunderstanding, while somewhat expected, substan-
tially complicates the scaling process. When no specific
information is provided, these participants can apply the
correct rules. However, when some information is given, they
follow a misleading path. Although this occurs very rarely (2
out of 133 participants), it results in a relatively high number
of violations (8 in this case).

One potential solution is to modify the task to explicitly
clarify the distinction between P(A|B) and P(A N B). An-
other approach could involve explicitly stating that the given
probabilities in the text are not the final solution. These mod-
ifications might reduce the number of violations. However,
there is also a pedagogical argument for retaining the original
task, as it highlights areas where students may struggle to
differentiate between P(A|B) and P(AN B). Addressing these
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conceptual misunderstandings is crucial to ensure accurate
assessment and understanding among participants.

The two remaining participants (108, 120) exhibit an-
swering patterns that are difficult to explain without further
information. Notably, both participants failed the exam, unlike
the other seven with violating patterns. Failing an exam often
leads to irregular behavior, possibly stemming from motivation
issues or time pressure. For instance, participant 120 did not
attempt to answer Items 2, 3, and 5, complicating the assess-
ment of these items as “not solved”. One potential approach
to gain insights into such behavior could involve filtering out
unusual answering patterns post-exam and conducting follow-
up interviews with the students. It is crucial that this process
does not disadvantage students or affect their grades. The goal
is to ascertain whether constructing a perfectly unidimensional
scale is possible. With H already exceeding .9, achieving
perfect unidimensionality seems feasible.

Notably, introductions to unidimensionality often lack ex-
amples with high H values. For instance, Ark (2012) present
a real data example of a cognitive test for children where a
selected subset of seven items achieves H = .515. Similarly,
van Schuur (2011) discusses a religious belief scale with an
H value of .64 as his first real data example. While these
values are reasonably high, they miss to fully illustrate the
potential of the concept. To convince other researchers of
the importance of unidimensionality, it is crucial to showcase
examples where H approaches 1. Such examples clearly
demonstrate that achieving perfect unidimensionality is a
realistic goal in test development. The Bayesian revision task
used in our professorship’s high-stakes exam situation serves
as a practical illustration with genuine relevance.

For instance, with a perfectly unidimensional scale, the
potential of adaptive testing is significantly enhanced. Solving
one specific item implies that easier items would also be solved,
thereby optimizing the assessment process. Moreover, detect-
ing cheating patterns could prompt a thorough re-evaluation
of exams to identify other irregularities and ensure fairness.
Response patterns indicative of specific gaps in knowledge
could be systematically analyzed to automatically generate
targeted feedback for students, thereby enhancing the quality
of teaching and learning outcomes.

This highlights the practical benefits of achieving a perfectly
unidimensional scale. However, it is important to note that
constructing a unidimensional scale does not guarantee its
usefulness, as this primarily depends on the soundness of
the underlying theory and various other considerations. Uni-
dimensionality should not replace theoretical work or other
criteria in test development, but rather complement them.
These points, along with other related ones, are discussed in
the final section.

General Discussion

The aim of this paper was to demonstrate that factor analysis
using Pearson correlations (¢ for dichotomous and polytomous
items) is inadequate for assessing dimensional structures. Ini-
tially, a simple definition of unidimensionality was explored
mathematically, leading to the inequality: H > ¢. This
inequality was then applied to construct a theoretical example
with dichotomous items, illustrating how factor analysis based
on ¢ fails to uncover the true unidimensional structure.

In the empirical section, this issue was investigated using a
real-world example featuring five dichotomous items. Despite
the items having only moderate correlations, the unidimen-
sionality index H for the scale was approximately .9. Once
again, factor analysis based on ¢ failed to identify a single
underlying dimension.

Furthermore, a detailed analysis revealed specific response
patterns among the 9 participants who violated unidimen-
sionality. These patterns can potentially indicate blunders,
cheating, or specific misunderstandings of the concepts being
tested. Psychologists are encouraged not to dismiss this valu-
able information as noise, but rather to utilize it to enhance
the quality of their tests.

While there is clear potential for using H to improve psycho-
logical measurement, psychologists must address numerous
other challenges in scaling procedures to achieve satisfactory
outcomes. Before delving into these issues, several other
aspects of this study warrant discussion.

When to Use Phi and When to Use H

One potential conclusion from the analysis presented is
that perhaps ¢ should simply not be used, at least not in factor
analysis. Instead, a viable alternative could be to utilize H
itself, which essentially represents an adjusted version of ¢
(as detailed in the Appendix). However, advocating for the
abandonment of ¢ appears short-sighted.

¢ is a widely adopted coefficient due to its exceptional
utility. From an informational perspective, it is renowned for
its effectiveness, often considered one of the most informative
measures for binary classification (Chicco, 2017; Chicco &
Jurman, 2023). When predicting responses of participants
on an item A based on an item B, ¢ is hard to surpass. It
precisely quantifies the success of such predictions: if ¢ equals
1, perfect predictions are achievable.

On the contrary, H is not suited for this particular purpose.
Even if H equals 1, it does not guarantee accurate predictions.
This is because solving an easy item does not necessarily
indicate success with a harder item. If most participants
solve the easy item, the prediction accuracy is poor, even in
a perfectly unidimensional scale. Similarly, the inability to
solve a hard item does not imply failure with the easy item.
H primarily signifies unidimensionality—whether items and
participants align along a single line. An H value of 1 simply
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indicates this alignment is feasible.'”

The fundamental question revolves around the researcher’s
objectives. For instance, if the goal is to identify the most
representative item reflecting a latent factor, then factor analy-
sis based on ¢ would be the preferred method, and H would
not be particularly useful. On the other hand, if the aim is to
assess the unidimensionality of a scale or identify a subset
of unidimensional items, H appears more suitable for this
purpose.

It is important to note that H can only be computed for
dichotomous and polytomous items. For continuous variables,
alternative methods are required to assess unidimensionality.
For example, implicit association tests utilize reaction times
and some cognitive tests also rely on similar measures. Phys-
iological data, being continuous, cannot be analyzed using
H.

While the majority of current psychological tests are di-
chotomous or polytomous, the inability to calculate H for
continuous data raises the question of whether traditional
factor analysis based on Pearson correlations needs to be
reconsidered. However, there exists a better alternative that
has yet to gain widespread adoption: State-trace analysis (STA,

Dunn & Kalish, 2018; Dunn et al., 2019). This approach
rigorously tests unidimensionality based on monotonicity
and can be applied to continuous variables, albeit currently
restricted to experimental factorial data. The theoretical
framework of STA is rooted in ordinality, which aligns well
with H and Guttman scaling.

How to Use H

Ark (2012) has developed an R package that offers a range
of functions for calculating H between items, an item and a
scale, and for the entire scale. These functions are particularly
valuable when there is a specific hypothesis about which
items belong to a single dimension. When conducting factor
analysis based on ¢ with a focus on assessing the dimensional
structure, it is advisable to verify the results using H.

The inequality H > ¢ suggests that using H in factor analy-
sis is likely to yield a simpler model, though the improvement
may not always be substantial. It is important to recognize
that this approach differs from traditional factor analysis using
the ¢ coefficient. Factor loadings and scores derived from H
may not be straightforward to interpret, so this method should
be used solely to assess unidimensionality.

Ark (2012) also offers a custom implementation utilizing a
genetic algorithm to identify unidimensional factors, present-
ing an alternative to traditional factor analysis. Despite this
option, psychologists’ familiarity with factor analysis suggests
they will be more inclined to integrate H as an additional input
rather than abandoning factor analysis altogether.

A less obvious application of unidimensionality indices
is their use in identifying patterns that violate the expected
structure. Traditional indices like H do not directly facilitate

this; instead, such insights come from examining raw Guttman
errors. These errors highlight instances where unidimensional-
ity is breached, offering crucial information for test refinement.
Guttman (1944, p. 150) summarized this approach succinctly:
“In imperfect scales, scale analysis picks out deviants or non-
scale types for case studies.” Despite its potential, psycholo-
gists often neglect analyzing these “deviants”, preferring to
classify them as mere noise. This tendency hinders a deeper
understanding of the underlying item response process. In the
context of the Bayesian revision task (refer to Section Part
1I: Empirical Example), the analysis of violations uncovered
several ways to improve the test. Yet, there is untapped
potential in conducting interviews with participants who defy
the scale’s expected response patterns.

The Potential of H for Psychological Science

Researchers who understand the inequality H > ¢ can make
better-informed decisions, potentially leading to numerous
advancements in psychological science. For example, a logical
next step would be to re-examine the dimensional structure of
existing psychological tests using H. It is likely that some tests
may have fewer dimensions than currently believed, which
could simplify the measurement process and the foundational
psychological theories on a broad scale.

When developing a new psychological test, H can be
utilized for item selection. Since H is focused solely on
unidimensionality, the reasoning behind including certain
items is simplified. For example, very easy and very hard
items can be problematic in traditional factor analysis because
their variance is restricted, resulting in low factor loadings.
However, such items are crucial for distinguishing participants
at the extreme ends of the scale. The decision to include or
exclude these items often becomes subjective. In such cases,
H could facilitate better decision-making (for a similar point
see Sijtsma & Molenaar, 2002, p. 55). If the factor loading
based on H is high, there is an objective reason to include the
item, even when the factor loading based on ¢ is low.

Considering the inequality H > ¢ during theory develop-
ment can also be beneficial. Essentially, a perfectly unidi-
mensional scale imposes a systematic restriction on empirical
outcomes. A good theory should at least provide a clear item
order and explain why certain item responses cannot co-occur.
This approach could prove more effective than the currently
dominant inductive item selection process, which often relies
more on intuition than on logical principles.

Moreover, a sound theory should incorporate the context
of item response. The Bayesian revision task, while relatively
simple, already reveals complex aspects of this theoretical
work. For instance, cheating and guessing are seldom ad-
dressed in psychological measurement despite being among

101n this scenario, knowing the sum score (total of both items),
one can infer responses to both items. However, if only the response
to one item is known, such inference is generally not possible.
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the most obvious forms of unidimensionality violation. Addi-
tionally, participants with very low motivation, such as those
anticipating poor performance (e.g. failing an exam), may
exhibit erratic response patterns. Currently, these aspects
are often dismissed as statistical noise although they can be
explained well with plausible psychological processes.

Overall, by re-evaluating dimensional structures and more
effectively justifying item selection, researchers can improve
the theoretical foundations, ultimately leading to more robust
and accurate psychological measurements.

Alternative coefficients

Although the Pearson correlation is widely used in psy-
chology, alternative measures of association exist that may be
more appropriate, especially for dichotomous variables. One
such measure is the tetrachoric correlation, which has been
recommended by several authors (e.g., Bonett & Price, 2005;
Kubinger, 2003; Ledesma et al., 2011). Even Guttman (1944,
p. 145) encountered criticism regarding this issue, though
he dismissed it by arguing that the tetrachoric correlation
assumes continuous and normally distributed latent variables.
In contrast, Guttman scaling imposes no such constraints:
The latent variable corresponds to the sum score of the scale,
which is discrete and does not require adherence to a specific
distribution. Indeed, Grgnneberg et al. (2020, p. 1040)
contended that when the underlying distribution is unknown,
“the normal theory tetrachoric correlation coefficient may not
be an informative measure of association for binary variables.”

There are additional challenges associated with the tetra-
choric correlation, primarily that it cannot be computed di-
rectly but must be estimated numerically using various al-
gorithms (e.g. with or without continuity correction). This
complexity makes it difficult to interpret and analyze this
correlation coefficient. While approximation formulas exist,
they may not be entirely satisfactory for rigorous analytical
purposes.

Guttman (1944) observed that the tetrachoric correlation
does not indicate how well one item can predict another, a
similarity it shares with H. Given this similarity, it would be
valuable to explore the relationship between the tetrachoric
correlation and H. However, if they are found to be similar in
their applications, H would be preferable due to its simplicity
and ease of interpretation.

For the polychoric correlation, which extends the tetrachoric
correlation to polytomous items, similar arguments apply. It
introduces additional assumptions that are often difficult to
justify, thereby making H more attractive.

An intriguing alternative to H is Yule’s Q for dichotomous
variables, equivalent to the y-coefficient (Goodman & Kruskal,
1954), which can also be applied to polytomous variables. For
positive values, similar to H > ¢, it appears that Q > ¢ (Eid
et al., 2017, p. 556), although the authors do not provide a
proof or citation. Preliminary simulations (not shown here)

suggest that the lower bound for Q exceeds ¢. Q shares
similarities with an index proposed by Zysno (1993). Based
on preliminary simulations, Zysno’s index also exhibits a
lower bound larger than ¢. If Zysno’s index or Q better reflect
unidimensionality compared to H this could strengthen the
arguments presented herein. In particular, the discrepancy
between correlation and unidimensionality would be even
larger. Future research should delve into the relationships
between these coeflicients, H and ¢.

In the analysis of binary coefficients mentioned earlier
(Brusco et al., 2021), Yule’s Q fell within the same subset as ¢.
Moreover, it is typically classified as a correlation coefficient
rather than a measure of unidimensionality. Similarly, the
tetrachoric correlation also falls within the same subset as ¢.
Thus, these coefficients still appear distinct from H, highlight-
ing its unique nature. This distinction is plausible given that
H is conceptualized specifically as a unidimensionality index,
not merely a measure of association.

While exploring alternative measures of association and
unidimensionality is valuable, the findings presented in this
study already bear significant implications. Improving psy-
chological scales can be viewed through the lens of unidi-
mensionality, utilizing H. Given that unidimensionality is
more fundamental than, for instance, reliability or validity, it
makes sense to prioritize achieving unidimensionality first and
subsequently pursue further refinement. Nevertheless, certain
measurement challenges in psychology may pose formidable
obstacles to overcome.

General Measurement Problems

Constructing a good psychological scale typically necessi-
tates a strong theoretical foundation. Simply studying unidi-
mensionality (or factor loadings) and iteratively adjusting the
test is unlikely to suffice. In the Bayesian revision task, only
five narrowly themed items were included, and it is evident
that they should logically form a single dimension. Intro-
ducing additional items that appear related could potentially
introduce multidimensionality. Success in scale construction
often hinges on having a robust theory that guides decisions
about which items are suitable or unsuitable for inclusion.

Determining the interdependence of items without a solid
theoretical framework is challenging, particularly for tests that
do not assess abilities. For instance, in the IPIP-NEO-120
(Johnson, 2014), if a person agrees that they “love big parties”,
does this necessarily mean they also agree that they “act wild
and crazy”? Conversely, does agreeing with the statement
“I act wild and crazy” imply they always “love big parties”?
If neither scenario holds true, then these items cannot be
regarded as unidimensional measures of extraversion alone;
other factors would need to be considered.

Testing abilities is easier because dependencies are more
clearly delineated. If an item relies on interim outcomes, the
magnitude of H will be substantial. When a test adheres to
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a well-defined dependency structure, a large H can signify
unidimensionality. However, it is possible to design a flawed
unidimensional test where interim results are required despite
lacking logical dependencies.

For example, solving a maximization problem in mathemat-
ics often involves differentiating a function and setting it to
zero. While one may know the general concept, the complexity
of differentiation, especially when involving rarely used rules,
can hinder finding the solution. The resulting ambiguity stems
from poorly defined dependencies. Understanding a specific
differentiation rule (Item 1) is not a prerequisite for grasping
the basic concept of finding maxima of a function (Item 2).

Even with a well-defined dependency tree, another crucial
aspect to consider is guessing. If participants can guess the
answers, H cannotbe 1. Guessing was intentionally minimized
in the Bayesian revision task, but it is often not addressed in
many other psychological tests. For instance, most intelligence
tests use forced-choice items, which inherently allow for guess-
ing. Reducing guessing in psychological instruments could
potentially enhance accuracy without significant additional
costs.

Finally, it is important to acknowledge that Guttman scaling,
which H is based on, is ordinal in nature. A scale with H = 1
implies that the sum score reflects perfect order, but it does not
quantify distance. This should not be seen as a drawback at the
current stage of psychological science. Seeking to establish
order in human behavior and experience is a practical objective.
In contrast, simply asserting that psychological measurements
are interval-scaled does not magically make them interval-
scaled (Heene, 2013; Michell, 1990, 2009). A more prudent
approach involves constructing strictly unidimensional ordinal
scales first, and then aiming for more. Measures like H
are valuable in this pursuit, but the primary challenge lies
in refining psychological theories. A sound psychological
theory should clearly delineate which empirical outcomes are
permissible and which are not. The framework presented
in this article has the potential to inspire psychologists to
cultivate more refined theories that prominently integrate
unidimensionality as a fundamental component, rather than
overlooking its importance.
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Appendix
Derivations
Derivation 1 (dichotomous)

The first derivation does not rely on any additional theorems
and can be performed using only the frequencies a, b, ¢, d:

H>¢ (AD)
| - bN S ad —cb
(a+b)(b+d) ~ \[(a+c)(a+b)(b+d)(c+d)
(A2)

Note that all variables are O or positive and, as previously
described, ¢ > b (the row item is easier or has the same
difficulty as the column item). First, we can substitute N with
a + b + ¢ + d and expand the denominator on the left-hand
side:

1_ba+bc+b2+bd ad —cb

>
ab+ad+b*+bd ~ \[(a+c)(a+b)(b+d)(c+d)
(A3)

Now, we can make a single fraction on the left-hand side:

ab+ad+b2+bd—ba—bc—b2—bd>
ab +ad + b? + bd -

ad—cb
V(a+c)(a+b)(b+d)(c+d)

(A4)

And get rid of the same terms:

ad — bc S ad —cb
ab+ad+b*+bd ~ \[(a+c)(a+b)(b+d)(c+d)
(A5

The numerators are the same so we can reduce further (note
that the inequality holds if ad = bc):

V(a+c)(a+b)(b+d)(c+d)>ab+ad+b>+bd (A6)

On the right-hand side we can extract the common factors:

Va+c)a+b)(b+d)(c+d) > (b+d)(b+a) (A7)
Squaring and reducing further:

(@a+c)a+b)(b+d)(c+d) > (b+d)?*b+a) (A8)

(a+c)(c+d)=(b+d)(b+a) (A9)

Expanding and reducing further:

ac+ad +c* +cd > b*+ba+db +da (A10)
ac+c? +cd > b +ba+db (A11)

Bringing everything on one side:
¢ —b*+ac—-ba+cd—db>0 (A12)

Factoring out ¢ — b:

(c=b)(c+Db)+a(c=b)+d(c—-D)=0 (A13)
(c=b)(c+b+a+d)=>0 (Al4)
(c=b)N =0 (A15)

Since N is always positive and ¢ > b (the error frequency is
b), the inequality H > ¢ holds true.

Derivation 2 (dichotomous and polytomous)

An alternative method of deriving H > ¢ is to rewrite H as
a ratio of covariances (see, for instance, Sijtsma & Molenaar,
2002, p. 55):!1

He COV(X, Y)’ _ r(X,Y)' (A16)
COV(X,Y)max  p(X,Y)max

Here, X and Y are the two item variables, and max indicates
the maximum covariance or correlation given the marginal
distributions of X and Y.'? Note that the ratio of correlations
equals the ratio of covariances because the marginal distribu-
tions, and thus the standard deviations of X and Y, remain the
same for both r and r™®*. Further note that it suffices to study
positive correlations, as a negative correlation between two
items can be converted to a positive one by reverse coding one
of the items.

Instead of  one can also use ¢ and rewrite:

¢

= ¢max

H > ¢ (A17)

Because ¢™** is still a correlation, it cannot exceed 1:

> ¢max (A18)

ASNRSS

P <1 (A19)
" The following derivation may seem trivial to those familiar with
the adjusted ¢ coefficient and its equivalence to H. When adjusting
a positive ¢, it can only increase, thus it will obviously be at least as
large as ¢. Nonetheless, readers unfamiliar with these concepts can
benefit from this formulation.
128pecifically, 7™ for the dichotomous case studied here, with a

positive correlation and p; > p», is ,l%.
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By using covariations, this derivation is more general and
is also applicable to polytomous items as long as weighted
counts of Guttman errors are used (Molenaar, 1991), which

is the standard approach (e.g., Ark, 2012; van Schuur, 2011).

The meaning of the coefficients remains the same: H is based
on the ratio of Guttman errors to expected errors, while ¢ is
simply the Pearson correlation. Although the primary focus of
this article is on dichotomous items, it is essential to highlight
that the conclusions apply equally to polytomous items.

As a sidenote, it is important to emphasize that % has
actually been proposed as an index for dichotomous variables
independently of H (Cureton, 1959). The idea was to create a

version of ¢ that would scale from -1 to 1, regardless of the
marginal proportions. Davenport and El-Sanhurry (1991, p.
823) described this index as “a measure of relationship apart
from its affiliation with ¢”, recognizing that it is not merely
an adjustment of ¢ but rather something distinct. Likely
unaware of the H index, they did not make a connection to
it. This is also true for several introductions to ¢, where the
max-adjustment is mentioned but not strongly recommended
(e.g. Bortz & Schuster, 2016; Eid et al., 2017). While ¢ and
the adjusted ¢ are related, their purposes differ, as the adjusted
¢ can be viewed as a measure of unidimensionality.
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